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1 Uniform Convergence of Series of Functions

Let fn, n ≥ 1, be functions defined on some interval I. We consider the series of functions∑∞
n=1 fn. This series pointwisely converges to a function f if for each x ∈ I, the series of

numbers
∑∞

n=1 fn(x) converges to the number f(x). In other words, for each x ∈ I and ε > 0,
there is some N0 depending on x and ε such that

|
N∑
n=1

fn(x)− f(x)| < ε , ∀N ≥ N0.

It uniformly converges to f if the number N0 can be chosen independent of x, that is, for
ε > 0, there is some N0 such that

|
N∑
n=1

fn(x)− f(x)| < ε , ∀N ≥ N0, ∀x ∈ I .

It is clear that uniform convergence implies pointwise convergence but the converse is not true.

Uniform convergence has many nice properties. We list three of them.

Theorem 1 (Continuity Theorem). Suppose that each fn is continuous on I and the series∑∞
n=1 fn uniformly converges to f . Then f is continuous on I.

In brief, uniform convergence preserves continuity. Here is an example of pointwise but not
uniformly convergent series. It does not preserve continuity.

Example 1. Recall the function f(x) = x, x ∈ (−π, π], extended as a 2π-periodic function, is
piecewise smooth with jumps at (2n+ 1)π. Its Fourier series is given by

2
∞∑
n=1

(−1)n+1

n
sinnx ,

(see pg 26 in Text). Now consider f as defined on [0, 2π]. It is smooth except jumps at π.
According to the main convergence theorem (Theorem 2.1 in Text), for x ∈ [0, 2π], x 6= π, the
series converges to f(x). At x = π, it converges to 0. Hence this series converges pointwisely
on [0, 2π]. However, it cannot be uniformly convergent. For, if it is, by Continuity Theorem, f
must be continuous on [0, 2π] which is not true.

Theorem 3 (Integration Theorem). Suppose that f =
∑∞

n=1 fn is uniformly convergent
where fn’s are piecewise continuous on [a, b]. The series

∑∞
n=1 Fn, where Fn(x) =

∫ x
a fn(t) dt,

converges uniformly to F (x) =
∫ x
a f(t)dt .

In this theorem the base point a in the definition of the primitive functions can be replaced by
any other point x0 ∈ [a, b]. The following is an application of this theorem. It shows that the
Fourier series of any uniformly convergent trigonometric series is equal to itself.
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Proposition 4. Consider a pointwise convergent trigonometric series

α0

2
+

∞∑
n=1

(αn cosnx+ βn sinnx) , x ∈ [−π, π],

and denote it by f(x). In case the convergence is uniform, the Fourier series of f is equal to the
series itself.

Proof As the convergence is uniform, f is continuous on [−π, π] by Continuity Theorem. It is
easy to see that the series

α0

2
cosmx+

∞∑
n=1

(αn cosnx+ βn sinnx) cosmx , m ≥ 1,

obtained by multiplying cosmx to both sides of the series, is again uniformly convergent (to
f(x) cosmx). By Integration Theorem,∫ π

−π
f(x) cosmxdx =

∫ π

−π

α0

2
cosmxdx+

∞∑
n=1

∫ π

−π

(
αn cosnx cosmxdx+

∫ π

−π
βn sinnx cosmxdx

)
= παm ,

but the left hand side is equal to πam, the Fourier coefficient of f . We conclude that αm =
am,m ≥ 0. Similarly, we can verify the other cases.

Theorem 5 (Differentiation Theorem). Suppose that (a) each fn is continuous on I and
the series

∑∞
n=1 fn uniformly converges to f , and (b) each fn is differentiable on I and

∑∞
n=1 f

′
n

uniformly converges to g. Then f is differentiable and f ′ = g on I.

Very often we use the notation
∑∞

n=1 fn to denote the pointwise/uniform limit of the series∑∞
n=1 fn. Thus,

∑∞
n=1 fn has two meanings, first it is the notation for a series of functions.

Second, it stands for the limit or sum of the series. Using the second meaning, we can express
Differentiation Theorem as:

( ∞∑
n=1

fn(x)

)′
=
∞∑
n=1

f ′n(x) ,

that is, summation and differentiation are commutative. On the other hand, the conclusion of
Integration Theorem can be expressed as∫ x

a

( ∞∑
n=1

fn(t) dt

)
=
∞∑
n=1

∫ x

a
fn(t) dt .

Given a series of functions, how can we show that it is uniformly convergent? The most common
method is Weierstrass’ M-Test.

Theorem 6 (M-Test). Let
∑∞

n=1 fn be a series of functions defined on I. Suppose that there
exists an, n ≥ 1, satisfying (a) |fn(x)| ≤ an, for all n and x ∈ I, and (b)

∑∞
n=1 an < ∞. Then∑∞

n=1 fn is uniformly convergent.
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Example 2. Consider the cosine series
∑∞

n=1

cosnx

n2
. Using | cos θ| ≤ 1, we see that | cosnx/n2| ≤

1/n2. As
∑∞

n=1 1/n2 <∞, we conclude that the series
∑∞

n=1

cosnx

n2
is uniformly convergent by

M-Test. Furthermore, since each cosnx/n2 is continuous,
∑∞

n=1

cosnx

n2
is a continuous function

by Continuity Theorem.

Example 3. Consider the sine series
∑∞

n=1

sinnx

nn
. The function fn(x) = sinnx/nn sat-

isfies f ′(x) = cosnx/nn−1, f ′′(x) = − sinnx/nn−2 , · · · . Clearly, |f (k)(x)| ≤ 1/nn−k. Using∑∞
n=1 1/nn−k is convergent for all k, we conclude that the series

∑∞
n=1 f

(k) is uniformly conver-

gent for all k. A repeated application of Differentiation Theorem shows that
∑∞

n=1

sinnx

nn
is an

infinitely many times differentiable function.

We apply these results to Fourier series. A series of numbers {an} is called rapidly decreasing
if for each k, there is some constant C such that |an| ≤ C/nk for all n.

Theorem 7. A continuous, piecewise smooth, 2π-periodic function is infinitely many times
differentiable if and only if its Fourier coefficients are rapidly decreasing.

Proof. Let an, bn be the Fourier coefficients of f . When f is infinitely many times differentiable,
the Fourier coefficients of f (k) tends to 0 as n → ∞ as a consequence of Bessel’s Inequality
applied to the function f (k). From the relations among the Fourier coefficients of a function and
its derivatives (see exercise), it implies

nk|an|, nk|bn| → 0, n→∞.

In particular, it means that there is some C such that

nk|an|, nk|bn| ≤ C ,

for each k. Hence an, bn are rapidly decreasing.

Conversely, when the coefficients are rapidly decreasing, |an|, |bn| ≤ C/nk for all k. Taking k = 3,
it implies that the series

∑
(nbn sinnx − nan sinnx) which is obtained from differentiating the

Fourier series of f term by term, is uniformly convergent. Since by Theorem 2.5 in Text, the
Fourier series of f converges to f uniformly. We can now apply Differentiation Theorem to
conclude that f is differentiable and

f ′(x) =
∑

(nbn sinnx− nan sinnx) ,

where the convergence is uniform. Repeating this argument, one can show that f is infinitely
many times differentiable.

For a detailed discussion on uniform convergence one is referred to chapter 8, Bartle-Sherbert.


